Electronic supplementary material Additional file 1: Supporting i

Electronic supplementary material Additional file 1: Supporting information on the scalable and number-controlled synthesis of carbon nanotubes by learn more nanostencil lithography. Includes a detailed fabrication process of the nanostencil mask, images of the various nanostencil apertures, and images CP673451 supplier of the synthesized CNTs. (PDF 440 KB) References 1. Baughman RH, Zakhidov AA, de Heer WA: Carbon nanotubes – the route toward applications. Science 2002, 297:787–792.CrossRef 2. Tans SJ, Verschueren ARM, Dekker C: Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393:49–52.CrossRef

3. Javey A, Wang Q, Ural A, Li Y, Dai H: Carbon

nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett 2002, 2:929–932.CrossRef 4. de Heer WA, Bacsa WS, Chatelain A, Gerfin T, Humphrey-Baker R, Forro L, Ugarte D: Aligned carbon nanotube films: production and optical and electronic properties. Science 1995, 268:845–847.CrossRef 5. Kim P, Lieber CM: Nanotube nanotweezers. Science 1999, 286:2148–2150.CrossRef 6. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, De Rossi AZD5582 purchase D, Rinzler AG, Jaschinski O, Roth S, Kertesz M: Carbon nanotube actuators. Science 1999, 284:1340–1344.CrossRef 7. Sazonova V, Yaish Y, Ustunel

H, Roundy D, Arias TA, McEuen PL: A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431:284–287.CrossRef 8. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung C-L, Lieber CM: Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289:94–97.CrossRef 9. Choi J, Lee J-I, Eun Y, Kim M-O, Kim J: Aligned carbon nanotube arrays for degradation-resistant, intimate contact in micromechanical devices. Adv Mater 2011, 23:2231–2236.CrossRef 10. Stampfer C, Helbling T, Obergfell LY294002 D, Schoberle B, Tripp MK, Jungen A, Roth S, Bright VM, Hierold C: Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett 2006, 6:233–237.CrossRef 11. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H: Nanotube molecular wires as chemical sensors. Science 2000, 287:622–625.CrossRef 12. Star A, Gabriel J-CP, Bradley K, Gruner G: Electronic detection of specific protein binding using nanotube FET devices. Nano Lett 2003, 3:459–463.CrossRef 13. Choi J, Kim J: Batch-processed carbon nanotube wall as pressure and flow sensor. Nanotechnology 2010, 21:105502.CrossRef 14. Chung J, Lee K-H, Lee J, Ruoff RS: Toward large-scale integration of carbon nanotubes. Langmuir 2004, 20:3011–3017.CrossRef 15.

Acta Crystallogr Sect D 63:951–960CrossRef Dau H, Andrews JC, Roe

Acta Crystallogr Sect D 63:951–960CrossRef Dau H, Andrews JC, Roelofs TA, Latimer MJ, Liang W, Yachandra VK, Sauer K, Klein MP (1995) Structural consequences of ammonia

binding to the manganese cluster of the photosynthetic oxygen-evolving complex: an X-ray absorption study of isotropic and oriented photosystem II particles. Biochemistry 34:5274–5287CrossRefPubMed Eisenberger P, Brown GS (1979) Study mTOR inhibitor of disordered systems by EXAFS: limitations. Solid State Commun 29:481–484CrossRef Eisenberger P, Kincaid BM (1978) EXAFS: new horizons in structure determinations. Science 200:1441–1447CrossRefPubMed Flank AM, Weininger M, Mortenson LE, Tanespimycin concentration Cramer SP (1986) Single-crystal EXAFS of nitrogenase. J Am Chem Soc 108:1049CrossRef George GN, Prince RC, Cramer SP (1989) The manganese site of the photosynthetic water-splitting enzyme. Science 243:789–791CrossRefPubMed George GN, Cramer SP, Frey TG, Prince RC (1993) X-ray absorption spectroscopy of oriented cytochrome oxidase. Biochim Biophys Acta 1142:240–252CrossRefPubMed

George GN, Pickering IJ, Kisker C (1999) X-ray absorption spectroscopy of chicken sulfite oxidase crystals. Inorg Chem 38:2539CrossRef Haumann M, Liebisch P, Muller C, Barra M, Grabolle M, Dau H (2005) Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310:1019–1021CrossRefPubMed Haumann M, Barra M, Loja P, Loscher S, Krivanek R, Grundmeier A, Andreasson LE, Dau H (2006) Bromide does STI571 research buy not bind to the Mn4Ca complex in its S1 state in Cl−-depleted and Br−-reconstituted oxygen-evolving photosystem II: evidence from X-ray absorption spectroscopy at the Br K-edge. Biochemistry 45:13101–13107CrossRefPubMed Koningsberger DC,

Prins R (eds) (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York Latimer MJ, DeRose VJ, Mukerji I, Yachandra VK, Sauer K, Klein MP (1995) OSBPL9 Evidence for the proximity of calcium to the manganese cluster of photosystem II: determination by X-ray absorption spectroscopy. Biochemistry 34:10898–10909CrossRefPubMed Lytle FW, Sayers DE, Stern EA (1989) Report of the international workshop on standards and criteria in X-ray absorption-spectroscopy (1988), Brookhaven National Laboratory. Physica B 158:701–722CrossRef Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, Sauer K, Klein MP, Yachandra VK (2001) Absence of Mn-centered oxidation in the S2 → S3 transition: implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc 123:7804–7820CrossRefPubMed Mukerji I, Andrews JC, Derose VJ, Latimer MJ, Yachandra VK, Sauer K, Klein MP (1994) Orientation of the oxygen-evolving manganese complex in a photosystem-II membrane preparation: an X-ray-absorption spectroscopy study.