rhamnosus GG and L casei ATCC 334 Figure 4 Unrooted phylogram

ATM/ATR inhibitor drugs rhamnosus GG and L. casei ATCC 334. Figure 4 Unrooted phylogram

tree of spxB, ulaE and xfp sequences from diverse lactobacilli. (A), spxB. (B), ulaE. (C), xfp. Protein alignments were performed using ClustalW2 [30] and used for phylogenetic tree construction at the Interactive Tree of Life [31]. Reference organisms: L. rhamnosus GG, L. casei ATCC 334, L. paracasei subsp. paracasei ATCC 25302, L. zeae (accession no. WP_010489923.1), L. buchneri CD034, L. plantarum WCFS1, L. helveticus R0052, L. delbrueckii subsp. lactis DSM 20072, this website L. delbrueckii subsp. bulgaricus ATCC 11842, L. curvatus CRL 705, L. brevis ATCC 367, L. pentosus KCA1, L. coryniformis (ulaE, accession no. WP_010012151.1; xfp, WP_010012483.1). UlaE BLASTX analysis of TDF no. 86 (109 bp), putatively encoding 36 amino acid residues, showed

the maximum identity (94%) to a protein annotated as L-xylulose 5-phosphate 3-epimerase (ulaE) from L. rhamnosus GG (Table 3). Eighty-four percent of identity was exhibited to the same putative protein from other L. casei group members (L. casei and L. paracasei subsp. paracasei). Homologues were also found in NSLAB known to play a role in flavor generation and other ripening processes: L. suebicus (74%), L. coryniformis (72%) and Carnobacterium maltaromaticum (69%). UlaE is an epimerase involved with other enzymes (UlaD and UlaF) in the production of D-xylulose 5-phosphate [45, 46], an intermediate in the pentose phosphate pathway. According to SyntTax, regions up and downstream of ulaE gene from L. rhamnosus GG shared a conserved gene order with Carnitine palmitoyltransferase II L. casei ATCC 334, whereas no synteny was found in L. buchneri CD034, L. plantarum WCFS1, L. helveticus R0052, L. delbrueckii subsp. click here bulgaricus ATCC 11842 and L. brevis ATCC 367 genomes (Figure 3B). According to PePPER analysis of L. rhamnosus GG genome, a potential terminator stem-loop structure was identified 82 bp downstream from the araD gene stop codon. No putative promoters were predicted up to 5000 bp upstream of ulaE gene. Interestingly, the upstream LGG_02727 gene was annotated as a transcriptional

regulator, belonging to DeoR family. Phylogenetic analysis of L-xylulose 5-phosphate 3-epimerase homologues revealed that ulaE predicted protein from L. rhamnosus clustered close to the putative enzymes from other L. casei group members and L. coryniformis (Figure 4B). Multiple sequence alignment of TDF 86 and homologs from several NSLAB is shown in Additional file 1: Figure S1B. Xfp TDF no. 40 (302 bp) displayed the highest identity (99%) in amino acid sequence with a putative phosphoketolase (xfp) from L. rhamnosus GG (Table 3). Percentages of identity > 95% were found with other L. casei group members (L. zeae, 98%; L. paracasei subsp. paracasei, 96%; L. casei, 96%). BLASTX search also revealed a significant match to a predicted xylulose-5-phosphate phosphoketolase from L. coryniformis (identity 75%). Interestingly, lower levels of identity were obtained with SLAB, such as L.

Comments are closed.