GJHZ1316), and the National Natural Science Foundation of China (

GJHZ1316), and the National Natural Science Foundation of China (grant nos. 61176013 and 61177038). References 1. Maeda Y: Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO 2 matrix: evidence in support of the quantum-confinement mechanism. Phys Rev B 1995, MDV3100 mw 51:1658.PP2 CrossRef 2. Saar A: Photoluminescence from silicon nanostructures: the mutual role of quantum confinement and surface chemistry. J Nanophoton 2009, 3:032501.CrossRef 3. Lin L, Guo S, Sun X, Feng J, Wang Y: Synthesis and photoluminescence properties of porous

silicon nanowire arrays. Nanoscale Res Lett 1822, 2010:5. 4. Kanemitsu Y, Uto H, Masumoto Y, Maeda Y: On the origin of visible photoluminescence in nanometer‒size Ge crystallites. Appl Phys Lett 1992, 61:2187.CrossRef 5. Won R, Paniccia M: Integrating silicon photonics. Nat Photon 2010, 4:498.CrossRef 6. Soref R: Silicon photonics technology: past, present, and future. IACS-10759 purchase Proc SPIE 2005, 5730:19–28.CrossRef 7. Soref R: Mid-infrared photonics in silicon and germanium. Nat Photon 2010,4(8):495–497.CrossRef 8. Rong H, Xu S, Cohen O, Raday O, Lee M, Sih V, Paniccia M: A cascaded silicon Raman laser. Nat Photon 2008,2(3):170–174.CrossRef

9. Terazzi R, Gresch T, Giovannini M, Hoyler N, Sekine N, Faist J: Bloch gain in quantum cascade lasers. Nat Phys 2007,3(5):329–333.CrossRef 10. Canedy C, Kim C, Kim M, Larrabee D, Nolde J, Bewley W, Vurgaftman I, Meyer J: High-power, narrow-ridge, mid-infrared interband cascade lasers. J Cryst Growth 2007, 301–302:931–934.CrossRef 11. Prokes S, Glembocki O, Bermudez V, Kaplan R, Friedersdorf L, Searson P: SiH x excitation: an alternate mechanism for porous Si photoluminescence. Phys Rev B 1992,45(23):13788.CrossRef Vasopressin Receptor 12. Yamada M, Kondo K: Comparing effects of vacuum annealing and dry oxidation on the photoluminescence of

porous Si. Jpn J Appl Phys 1992,31(8):993–996.CrossRef 13. Cullis A, Canham L: Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 1991, 353:355.CrossRef 14. Kanemitsu Y, Ogawa T, Shiraishi K, Takeda K: Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell. Phys Rev B 1993,48(7):4883.CrossRef 15. Brus L: Luminescence of silicon materials: chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon. J Phys Chem 1994,98(14):3575–3581.CrossRef 16. Audoit G, Mhuircheartaigh EN, Lipson SM, Morris MA, Blau WJ, Holmes JD: Strain induced photoluminescence from silicon and germanium nanowire arrays. J Mater Chem 2005,15(45):4809–4815.CrossRef 17. Lin L, Sun X, Tao R, Li Z, Feng J, Zhang Z: Photoluminescence origins of the porous silicon nanowire arrays. J Appl Phys 2011,110(7):073109.CrossRef 18. He H, Liu C, Sun L, Ye Z: Temperature-dependent photoluminescence properties of porous silicon nanowire arrays.

Comments are closed.