CrossRef 4. Link S, EI-Sayed MA: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 1999, 103:8410–8426.CrossRef 5. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP: Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 2000, 104:10549–10556.CrossRef
6. Link S, EI-Sayed MA: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 2000, 19:409–453.CrossRef 7. Haes AJ, Van Dutne RP: A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J see more Am Chem Soc 2002, 124:10596–10604.CrossRef 8. Haynes CL, McFarland AD, Zhao LL, Van Duyne RP, Schatez GC, Gunnarsson L, Prikulis J, LY333531 Kasemo B, Kall M: Nanoparticle Selleckchem QNZ optics: the importance of radiative
dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 2003, 107:7337–7342.CrossRef 9. Richardson HH, Carlson MT, Tandler PJ, Hernandez P, Govorov AO: Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 2009, 9:1139–1146.CrossRef 10. Kam W, O’Connell M, Wisdom JA, Dai H: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell
destruction. Proc Natl Acad Sci USA 2005, 102:11600–11605.CrossRef 11. Ye E, Yin K, Tan HR, Lin M, Teng CP, Mlayah A, Han MY: Plasmonic gold nanocrosses with multidirectional excitation and strong photothermal effect. J Am Chem Soc 2011, 133:8506–8509.CrossRef 12. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai H: A route to brightly fluorescent carbon nanotubes for near-infrared 2-hydroxyphytanoyl-CoA lyase imaging in mice. Nat Nanotechnol 2009, 4:773–780.CrossRef 13. Huang X, El-Sayed IH, Qian W, El-Sayed MA: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006, 128:2115–2120.CrossRef 14. Huang HC, Barua S, Kay DB, Rege K: Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. ACS Nano 2009, 3:2941–2952.CrossRef 15. Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C: Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 2012, 24:1418–1423.CrossRef 16. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003, 100:13549–13554.CrossRef 17.