APJCP 2014,15(1):517–535 103 Valizadeh H, Mohammadi G, Ehyaei R

APJCP 2014,15(1):517–535. 103. Valizadeh H, Mohammadi G, Ehyaei R, Milani M, Azhdarzadeh M, Zakeri-Milani P, Lotfipour F: Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Pharmazie Int J Pharm Sci 2012,67(1):63–68. 104. Hasani A, Sharifi Y, Ghotaslou R, Naghili B, Aghazadeh M, Milani M: Molecular screening of virulence genes in high-level gentamicin-resistant Enterococcus faecalis and Enterococcus faecium isolated from clinical

selleck chemical specimens in Northwest Iran. Indian J Med Microbiol 2012, 30:2. 105. Sharifi Y, Hasani A, Ghotaslou R, Varshochi M, Hasani A, Soroush MH, Aghazadeh M, Milani M: Vancomycin-resistant Enterococci among clinical isolates from north-west Iran: identification of therapeutic surrogates. J Med Microbiol 2012,61(4):600–602. 106. Farajnia S, Hassan M, HallajNezhadi S, Mohammadnejad L, Milani M, Lotfipour F: Determination of indicator bacteria in pharmaceutical samples by multiplex PCR. J Rapid Meth Aut Mic 2009,17(3):328–338. Competing interests The DNA Synthesis inhibitor Authors declare that they have no competing interests. Authors’ contributions SWJ conceived the

study {Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleck Anti-diabetic Compound Library|Selleck Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Selleckchem Anti-diabetic Compound Library|Selleckchem Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|Anti-diabetic Compound Library|Antidiabetic Compound Library|buy Anti-diabetic Compound Library|Anti-diabetic Compound Library ic50|Anti-diabetic Compound Library price|Anti-diabetic Compound Library cost|Anti-diabetic Compound Library solubility dmso|Anti-diabetic Compound Library purchase|Anti-diabetic Compound Library manufacturer|Anti-diabetic Compound Library research buy|Anti-diabetic Compound Library order|Anti-diabetic Compound Library mouse|Anti-diabetic Compound Library chemical structure|Anti-diabetic Compound Library mw|Anti-diabetic Compound Library molecular weight|Anti-diabetic Compound Library datasheet|Anti-diabetic Compound Library supplier|Anti-diabetic Compound Library in vitro|Anti-diabetic Compound Library cell line|Anti-diabetic Compound Library concentration|Anti-diabetic Compound Library nmr|Anti-diabetic Compound Library in vivo|Anti-diabetic Compound Library clinical trial|Anti-diabetic Compound Library cell assay|Anti-diabetic Compound Library screening|Anti-diabetic Compound Library high throughput|buy Antidiabetic Compound Library|Antidiabetic Compound Library ic50|Antidiabetic Compound Library price|Antidiabetic Compound Library cost|Antidiabetic Compound Library solubility dmso|Antidiabetic Compound Library purchase|Antidiabetic Compound Library manufacturer|Antidiabetic Compound Library research buy|Antidiabetic Compound Library order|Antidiabetic Compound Library chemical structure|Antidiabetic Compound Library datasheet|Antidiabetic Compound Library supplier|Antidiabetic Compound Library in vitro|Antidiabetic Compound Library cell line|Antidiabetic Compound Library concentration|Antidiabetic Compound Library clinical trial|Antidiabetic Compound Library cell assay|Antidiabetic Compound Library screening|Antidiabetic Compound Library high throughput|Anti-diabetic Compound high throughput screening| and participated in its design and coordination. EA participated in the sequence alignment and drafted the manuscript. AA, RPA, SFA, HTN, YH, KNK, and MM helped in drafting the manuscript. All authors read and approved the final manuscript.”
“Background Chemiresistive sensors have aroused much attention in environment monitoring, industry and agriculture production, medical diagnosis, military, and public safety, etc. nowadays [1–5]. In order to meet the requirements of industry and other fields’ demands, semi-conducting metal oxide, organic semiconductors, and carbon materials, etc., which have high aspect ratio and large specific surface area, have been widely used as sensing materials and the excellent performances of the resultant devices Sinomenine have been achieved [6–8]. Graphene, as a new member of carbon family, has emerged as a promising candidate for sensing because of its unique electronic, excellent mechanical, chemical,

and thermal properties [9–18]. Excellent sensing performance of graphene towards different kinds of gases, including NO2, NH3, H2O, CO, trimethylamine, I2, ethanol, HCN, dimethyl methylphosphonate (DMMP), and DNT, have been reported [19–26]. Generally, there are three main methods to prepare graphene materials: micromechanical exfoliation of graphite [16], chemical vapor deposition [27], and reduction of graphene oxide (GO) [28]. The resultant graphene materials can be considered as excellent candidates for gas sensing, especially for chemically reduced graphene oxide (rGO). The rGO sheets have great potential for using as chemiresistors [29–32] due to their scalable production, easy processability in solution, large available surface area, etc.

Comments are closed.