CrossRef

5 Harman T, Taylor P, Walsh M, La Forge B: Quan

CrossRef

5. Harman T, Taylor P, Walsh M, La Forge B: Quantum dot superlattice thermoelectric materials and devices. Science 2002,297(5590):2229–2232.CrossRef 6. Yang JM, Yang H, Lin LW: Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 2011,5(6):5067–5071.CrossRef 7. Chen KH, Chien CY, Li PW: Precise Ge quantum dot placement for quantum tunneling devices. Nanotechnology 2010, 21:055302.CrossRef 8. Chen KH, Chien CY, Lai WT, George T, Scherer A, Li PW: Controlled heterogeneous nucleation and growth of germanium quantum dots on nano-patterned silicon dioxide and silicon nitride substrates. J Crystal Growth & Design 2011, 11:3222.CrossRef 9. Chien CY, Chang YJ, Chen KH, Trichostatin A clinical trial Lai WT, George T, Scherer A, Li PW: Nanoscale, catalytically-enhanced local oxidation of silicon-containing layers by ‘burrowing’ Ge quantum dots. Nanotechnology 2011, 22:435602.CrossRef 10. Kuo MH, Wang CC, Lai WT, George T, Li

PW: Designer Ge quantum dots on Si: a heterostructure configuration with enhanced optoelectronic performance. Appl Phys Lett 2012,101(11):223107.CrossRef 11. Chang JE, Liao PH, Chien CY, Hsu JC, Hung MT, Lee SW, Chen WY, Hsu TM, George T, Li PW: Matrix and quantum confinement effects on optical and thermal https://www.selleckchem.com/products/AG-014699.html properties of Ge quantum dots. J Phys D: Appl Phys 2012,45(10):15303–15308.CrossRef 12. Ostwald W: Lehrbuch der Allgemeinen Chemie, vol. 2, part 1. Leipzig: Engelmann; 1896. 13. Ratke L, Voorhees PW: Growth and Coarsening:

Ostwald Ripening in Material Processing. Heidelberg: Springer; 2002.CrossRef 14. Stekolnikov A, Bechstedt F: Shape of free and constrained group-IV crystallites: influence of surface energies. Phys Rev B 2005,72(12):125326.CrossRef 15. “The Curious Case of Benjamin Button”. http://​en.​wikipedia.​org/​wiki/​The_​Curious_​Case_​of_​Benjamin_​Button_​(film) 16. Dunham ST, Plummer JD: Point‒defect generation during oxidation of silicon in dry oxygen.I. Theory. J Appl Phys 1986,59(7):2541–2550.CrossRef 17. Dunham ST: Interstitial kinetics near oxidizing silicon interfaces. J Electrochem Soc 1989,136(1):250–254.CrossRef 18. Uematsu M, Kageshima H, Shiraishi K: Microscopic mechanism of thermal silicon oxide growth. Comput Mater Sci 2002, 24:229–234.CrossRef 19. Leroy B: Stresses and silicon interstitials during the oxidation of a silicon substrate. Philosophical aminophylline Magazine Part B 1987,55(2):159–199.CrossRef 20. Hu SM: Kinetics of interstitial supersaturation during oxidation of silicon. Appl Phys Lett 1983,43(5):449–451.CrossRef 21. Nayak DK, Kimjoo J, Park JS, Woo JCS, Wang KL: Wet oxidation of GeSi strained layers by rapid thermal processing. Appl Phys Lett 1990,57(4):369–371.CrossRef 22. LeGoues FK, Rosenberg R, Nguyen T, Himpsel F, Meyerson BS: Oxidation studies of SiGe. J Appl Phys 1989,65(4):1724–1728.CrossRef 23. Eugene J, LeGoues FK, Kesan VP, Iyer SS, d’Heurle FM: Diffusion versus oxidation rates in silicon‒germanium alloys. Appl Phys Lett 1991,59(1):78–80.CrossRef 24.

Comments are closed.